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Magic?

..at a Price?

Drivers:
• Density

– signal loss
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Harmonics are 3-5x signal speed



Skin Depth vs. Frequency
A.Scott; Understanding Microwaves
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“...distance in the conductor at which the electric field
has decreased to 30% of the value at the surface.”



Skin Depth Schematic

Laminate Substrate

Copper Circuitry X-Section40µm



Skin Depth Schematic

40µm

0.5µm

Ideal Shape is not Realistic



Skin Depth Schematic



Current Density by Design

High c urre nt de nsity region
SE micros tr ip D ifferential

High c urre nt de nsity region
SE micros tr ip D ifferential

• Single Ended (SE) uStrip vs. Differential uStrip
structures
– Current densities and electric fields more concentrated in

trace edges coated with surface finish
– More sensitive to trace geometries



PCB Process Sequence

Clean Substrate Innerlayer Resist Expose/ Develop Etch Resist Strip

Innerlayer Oxide Lamination DesmearDrill Plate Thru Holes

Plating Resist Electrolytic Copper Tin Etch Resist Outerlayer EtchStrip Resist

Tin Strip Soldermask Expose/ Develop/ Bake FINAL FINISH Legend Ink



Conductor Shape



Surface Finish

OSP

ENIG Sn

Ag



WW Use of Surface Finish
IPC Technology Marketing Research Council 2002
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Nickel Gold
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Metal Conductivity

Silver 1.6 µΩcm
Copper 1.7 µΩcm
Gold 2.4 µΩcm
Nickel 7.4 µΩcm
Tin 10.9 µΩcm
Sn60Pb40 solder 17.0 µΩcm
E-Less Ni P 55-90 µΩcm



Substrate Properties

Property N-4000-6 FC N-4000-13 N-6000-21

Permittivity * 4.0+/-0.1 3.6+/-0.1 3.5+/- 0.1

Permittivity** 4.3+/-0.1 4.0+/-0.1 3.9+/- 0.1

Dissipation
Factor *

0.025 0.013 0.004

Dissipation
Factor **

0.0140 0.0088 0.0085

Moisture
Absorption

0.20% 0.10% 0.05%

Peel Strength
lbs/inch

> 10.0 > 9.0 > 9.0

Flammability 94V-0 94V-0 94V-0

*  by Stripline (IPC-TM-650) at 1.5 - 2.0 GHz.
** by Split-Post Cavity Resonator (NIST) at 3.3 GHz.

FR-4 Modified FR-4 APPE



Experiment Matrix
• Substrate Material

• N4000-6
• N4000-13
• N6000-21

• Foil Type
• standard (ED)
• reverse treat (RTF)

• Film Thickness and Etching
• Surface Finish

• Organic Solderability Preservative
• Electroless Nickel Immersion Gold
• Immersion Silver
• Immersion Tin

• Frequency
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Experiment Goals

• Identify parameters that affect signal loss
• prioritize
• minimize
• less power required; more signal recognition

• Predict signal loss
• allows use of inexpensive materials
• extends useful life of Copper circuits
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Test Vehicle

Core 2116

Foil

0.5 oz

Core 2116

Foil

0.5 oz

Total thickness 44-62mils

Lyr1

Lyr2

Lyr3

Lyr4

Conventional Core Lamination: thickness control, resin content control



Transmission Line Design



Coupon Design
• 3 different line width/space combinations

– Selected so that 1 line width targets ~100ohm differential
on a specific material

– Allows comparison between similar line width vs similar
Zo (characteristic impedance) target

• Repeat 3 width/space combinations 5 times within
coupon
– Correct for measurement variations
– Encompass spatial variations due to glass weave issues.

• 3 different line width/space combinations
– Selected so that 1 line width targets ~100ohm differential

on a specific material
– Allows comparison between similar line width vs similar

Zo (characteristic impedance) target

• Repeat 3 width/space combinations 5 times within
coupon
– Correct for measurement variations
– Encompass spatial variations due to glass weave issues.

Traces for Mtrl 1 Traces for Mtrl 2 Traces for Mtrl 3



Coupon Design / Measurement
• Desire to not terminate in a connector

– Utilize Cascade micro probe
• Good through 18+GHz
• Better for direct measurement for RLGC extractions

• Measurements to be taken coplanar
– Sets up E-field as differential
– Does not require 4port VNA

• Desire to not terminate in a connector
– Utilize Cascade micro probe

• Good through 18+GHz
• Better for direct measurement for RLGC extractions

• Measurements to be taken coplanar
– Sets up E-field as differential
– Does not require 4port VNA

4.5inch

80mils

30mils

Ground 
 - Vias to reference plane
 - Clearance to trace 7mils



Coupon Design / Measurement

• Coupon Geometries
– Dielectric Spacing (2116 core)  ~4.2mils

– Trace Pair A
• Target 100ohm on N4000-6/N4000-13
• 4mil trace/5mil space

– Trace Pair B
• Target 100ohm on N6000-21
• 6mil trace/8mil space

– Trace Pair C
• Target 85ohm on N4000-6/N4000-13
• 5mil trace/7mil space

• Coupon Geometries
– Dielectric Spacing (2116 core)  ~4.2mils

– Trace Pair A
• Target 100ohm on N4000-6/N4000-13
• 4mil trace/5mil space

– Trace Pair B
• Target 100ohm on N6000-21
• 6mil trace/8mil space

– Trace Pair C
• Target 85ohm on N4000-6/N4000-13
• 5mil trace/7mil space

80mils

30mils

Ground 
 - Vias to reference plane
 - Clearance to trace 7mils

space

trace



Cascade Probe, Agilent VNA



Responses

• Electrical analysis
– S12 loss
– Conductor loss (Extracted)
– Differential Zo
– Er dK (dielectric constant) from S12

• Mechanical
– Line width
– Conductor shape
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Dielectric Constant is stable with Frequency

Effective Er (IMAG-Matrix 4,2)
(100MHz-16GHz)

1

2

3

4

5

0.1 2.1 4.1 6.1 8.1 10.1 12.1 14.1

Frequency (GHz)

Er

16.1



Substrate Results
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dielectric constant” of
the system

• substrate
• air
• no soldermask
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Across the Frequency Range
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Surface Finish Results
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Expect higher loss
from differential
pair compared to
microstrip designs

• no predominant
ground return

• current crowding on
traces
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Loss by Finish and Material Type
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Conclusions

• Frequency, as expected, gave the largest
contribution to signal loss.

• Maximum loss occurred on the sample made
from FR-4, standard tooth foil, poor
conductor shape, ENIG.

• Foil tooth had a larger role than expected;
study continues.

• Surface finish and foil tooth were more
important with differential pair designs than
with single-ended designs.

• Higher losses measure on ENIG and Sn
followed predicted increases in bulk
resistivity.
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