

Reduction Of High-Frequency Signal Loss Through The Control Of Conductor Geometry And Surface Metallization

> Don Cullen MacDermid, Inc. September 24th, 2002

Team Members

Gary Brist

PCB Technologist Intel Corp. Hillsboro, OR

Don Cullen

Director - OEM & Assembly Applications MacDermid Inc. Waterbury, CT

David Luttrull

Product Director - High Performance Materials

Park Nelco Tempe, AZ

John Martin

Hardware Engineering Cisco Systems San Jose, CA

...at a Price?

Drivers:

- Density
 - signal loss
- Environment
 - new materials
- Cost
 - old technology

Speed!

System Data Rates

Skin Depth vs. Frequency

A.Scott; Understanding Microwaves

has decreased to 30% of the value at the surface."

Skin Depth Schematic

SE microstrip Differential High current density region

- Single Ended (SE) uStrip vs. Differential uStrip structures
 - Current densities and electric fields more concentrated in trace edges coated with surface finish
 - More sensitive to trace geometries

PCB Process Sequence

Conductor Shape

Metal Conductivity

Silver	1.6 μΩcm
Copper	1.7 μΩcm
Gold	2.4 μΩcm
Nickel	7.4 μΩcm
Tin	10.9 μΩcm
Sn60Pb40 solder	17.0 μΩcm
E-Less Ni P	55-90 μΩcm

Substrate Properties

	FR-4	Modified FR-4	APPE
Property	N-4000-6 FC	N-4000-13	N-6000-21
Permittivity *	4.0+/-0.1	3.6+/-0.1	3.5+/- 0.1
Permittivity**	4.3+/-0.1	4.0+/-0.1	3.9+/- 0.1
Dissipation Factor *	0.025	0.013	0.004
Dissipation Factor **	0.0140	0.0088	0.0085
Moisture Absorption	0.20%	0.10%	0.05%
Peel Strength lbs/inch	> 10.0	> 9.0	>9.0
Flammability	94V-0	94V-0	94V-0

* by Stripline (IPC-TM-650) at 1.5 - 2.0 GHz.** by Split-Post Cavity Resonator (NIST) at 3.3 GHz.

Experiment Matrix

- Substrate Material
 - N4000-6
 - N4000-13
 - N6000-21
- Foil Type
 - standard (ED)
 - reverse treat (RTF)
- Film Thickness and Etching
- Surface Finish
 - Organic Solderability Preservative
 - Electroless Nickel Immersion Gold
 - Immersion Silver
 - Immersion Tin
- Frequency

Experiment Goals

Test Vehicle

Conventional Core Lamination: thickness control, resin content control

Transmission Line Design

		IMAG-DF	
14 -	4.5" 47/55/47		A1
18 AS	4.5° 47/55/47		1B ZA
as as	4 5* 47/55/47		AS AA
38 A A	4 5* 47/55/47		3B 4A
48	4.5* 47/55/41		4B
58	Ta\28\Ta *2 5		58
2 80 80	4 5* 6T/85/6T		
287 A8	4.5.6T/85/6T		
88	4.5° 6T/85/6T		88
1 A0 I	4.5° 6T/85/6T		9B 10A
801	A 6* 67/76/67		108
	TALATATA A N		118
	4.5 51/15/51		
	4.5 51/15/51		138
148	4 5: 51/75/57		148
158			158

_														-	
1A 2	18 2A	28 3A	3B 4A	48 5 A	58	6A 6B	A B	BB 9A	10A 2	108 2	118 12A	128 5. 13A 5.	138 14A	-148 -	158

Coupon Design

- 3 different line width/space combinations
 - Selected so that 1 line width targets ~100ohm differential on a specific material
 - Allows comparison between similar line width vs similar Zo (characteristic impedance) target
- Repeat 3 width/space combinations 5 times within coupon
 - Correct for measurement variations
 - Encompass spatial variations due to glass weave issues.

Coupon Design / Measurement

- Desire to not terminate in a connector
 - Utilize Cascade micro probe
 - Good through 18+GHz
 - Better for direct measurement for RLGC extractions
- Measurements to be taken coplanar
 - Sets up E-field as differential
 - Does not require 4port VNA

Coupon Design / Measurement

Coupon Geometries

- Dielectric Spacing (2116 core) ~4.2mils
- Trace Pair A
 - Target 100ohm on N4000-6/N4000-13
 - 4mil trace/5mil space
- Trace Pair B
 - Target 100ohm on N6000-21
 - 6mil trace/8mil space
- Trace Pair C
 - Target 850hm on N4000-6/N4000-13
 - 5mil trace/7mil space

Cascade Probe, Agilent VNA

Responses

- Electrical analysis
 - S12 loss
 - Conductor loss (Extracted)
 - Differential Zo
 - Er dK (dielectric constant) from S12
- Mechanical
 - Line width
 - Conductor shape

ote: This is the "effective dielectric constant" of the system

- substrate
- air
- no soldermask

Across the Frequency Range

Surface Finish Results

Note: Expect higher loss from differential pair compared to microstrip designs

- no predominant ground return
- current crowding on traces

Material within Surface Finish

* results chart shape affected by experimental error

Conclusions

- Frequency, as expected, gave the largest contribution to signal loss.
- Maximum loss occurred on the sample made from FR-4, standard tooth foil, poor conductor shape, ENIG.
- Foil tooth had a larger role than expected; study continues.
- Surface finish and foil tooth were more important with differential pair designs than with single-ended designs.
- Higher losses measure on ENIG and Sn followed predicted increases in bulk resistivity.

References

- A.Scott; Understanding Microwaves
- D.Cullen; RF Loss on Teflon Materials
- IPC TMRC, US EPA Surface Finishes
- J.McCall; Loss in Realistic PCB's
- D.Cullen; On the Surface Circuitree
- MacDermid CD-Rom

Thank You